// Basic Easing library for simple easing functionality in Unity // Unlicense license [whole license stated at the bottom of the file] // Based on Robert Penner's easing functions (http://www.robertpenner.com/easing/) and AHEasing (https://github.com/warrenm/AHEasing) // Modified for Unity by Jiri Stary (https://github.com/jiristary) using System.Runtime.CompilerServices; using UnityEngine; namespace UnityEasing { public enum Ease { Linear, // Quadratic x^2 InQuad, OutQuad, InOutQuad, // Cubic x^3 InCubic, OutCubic, InOutCubic, // Quartic x^4 InQuart, OutQuart, InOutQuart, // Quintic x^5 InQuint, OutQuint, InOutQuint, // Sine InSine, OutSine, InOutSine, // Circular InCirc, OutCirc, InOutCirc, // Exponential InExpo, OutExpo, InOutExpo, // Elastic InElastic, OutElastic, InOutElastic, // Back InBack, OutBack, InOutBack, // Bounce InBounce, OutBounce, InOutBounce, } public static class Easing { private const float PI = Mathf.PI; private const float HALF_PI = Mathf.PI * 0.5f; //================================================================================================== /// /// Get eased value between 0 and 1 /// public static float Get(this Ease easeType, float value) { if (value <= 0f) return 0f; if (value >= 1f) return 1f; return GetUnclamped(value, easeType); } /// /// Get unclamped eased value /// public static float GetUnclamped(this Ease easeType, float value) { return GetUnclamped(value, easeType); } /// /// Get eased value between 0 and 1 /// public static float Get(float value, Ease easeType) { if (value <= 0f) return 0f; if (value >= 1f) return 1f; return GetUnclamped(value, easeType); } /// /// Get unclamped eased value /// public static float GetUnclamped(float value, Ease easeType) { switch (easeType) { default: case Ease.Linear: return Linear(value); case Ease.OutQuad: return QuadraticEaseOut(value); case Ease.InQuad: return QuadraticEaseIn(value); case Ease.InOutQuad: return QuadraticEaseInOut(value); case Ease.InCubic: return CubicEaseIn(value); case Ease.OutCubic: return CubicEaseOut(value); case Ease.InOutCubic: return CubicEaseInOut(value); case Ease.InQuart: return QuarticEaseIn(value); case Ease.OutQuart: return QuarticEaseOut(value); case Ease.InOutQuart: return QuarticEaseInOut(value); case Ease.InQuint: return QuinticEaseIn(value); case Ease.OutQuint: return QuinticEaseOut(value); case Ease.InOutQuint: return QuinticEaseInOut(value); case Ease.InSine: return SineEaseIn(value); case Ease.OutSine: return SineEaseOut(value); case Ease.InOutSine: return SineEaseInOut(value); case Ease.InCirc: return CircularEaseIn(value); case Ease.OutCirc: return CircularEaseOut(value); case Ease.InOutCirc: return CircularEaseInOut(value); case Ease.InExpo: return ExponentialEaseIn(value); case Ease.OutExpo: return ExponentialEaseOut(value); case Ease.InOutExpo: return ExponentialEaseInOut(value); case Ease.InElastic: return ElasticEaseIn(value); case Ease.OutElastic: return ElasticEaseOut(value); case Ease.InOutElastic: return ElasticEaseInOut(value); case Ease.InBack: return BackEaseIn(value); case Ease.OutBack: return BackEaseOut(value); case Ease.InOutBack: return BackEaseInOut(value); case Ease.InBounce: return BounceEaseIn(value); case Ease.OutBounce: return BounceEaseOut(value); case Ease.InOutBounce: return BounceEaseInOut(value); } } //================================================================================================== /// /// Modeled after the line y = x /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float Linear(float p) { return p; } /// /// Modeled after the parabola y = x^2 /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float QuadraticEaseIn(float p) { return p * p; } /// /// Modeled after the parabola y = -x^2 + 2x /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float QuadraticEaseOut(float p) { return -(p * (p - 2f)); } /// /// Modeled after the piecewise quadratic /// y = (1/2)((2x)^2) ; [0, 0.5) /// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float QuadraticEaseInOut(float p) { if (p < 0.5f) { return 2f * p * p; } else { return (-2f * p * p) + (4f * p) - 1f; } } /// /// Modeled after the cubic y = x^3 /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float CubicEaseIn(float p) { return p * p * p; } /// /// Modeled after the cubic y = (x - 1)^3 + 1 /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float CubicEaseOut(float p) { float f = p - 1f; return f * f * f + 1f; } /// /// Modeled after the piecewise cubic /// y = (1/2)((2x)^3) ; [0, 0.5) /// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float CubicEaseInOut(float p) { if (p < 0.5f) { return 4f * p * p * p; } else { float f = ((2f * p) - 2f); return 0.5f * f * f * f + 1f; } } /// /// Modeled after the quartic x^4 /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float QuarticEaseIn(float p) { return p * p * p * p; } /// /// Modeled after the quartic y = 1 - (x - 1)^4 /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float QuarticEaseOut(float p) { float f = (p - 1f); return f * f * f * (1f - p) + 1f; } /// // Modeled after the piecewise quartic // y = (1/2)((2x)^4) ; [0, 0.5) // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float QuarticEaseInOut(float p) { if (p < 0.5f) { return 8f * p * p * p * p; } else { float f = (p - 1f); return -8f * f * f * f * f + 1f; } } /// /// Modeled after the quintic y = x^5 /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float QuinticEaseIn(float p) { return p * p * p * p * p; } /// /// Modeled after the quintic y = (x - 1)^5 + 1 /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float QuinticEaseOut(float p) { float f = (p - 1f); return f * f * f * f * f + 1f; } /// /// Modeled after the piecewise quintic /// y = (1/2)((2x)^5) ; [0, 0.5) /// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float QuinticEaseInOut(float p) { if (p < 0.5f) { return 16f * p * p * p * p * p; } else { float f = ((2f * p) - 2f); return 0.5f * f * f * f * f * f + 1f; } } /// /// Modeled after quarter-cycle of sine wave /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float SineEaseIn(float p) { return Mathf.Sin((p - 1f) * HALF_PI) + 1; } /// /// Modeled after quarter-cycle of sine wave (different phase) /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float SineEaseOut(float p) { return Mathf.Sin(p * HALF_PI); } /// /// Modeled after half sine wave /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float SineEaseInOut(float p) { return 0.5f * (1f - Mathf.Cos(p * PI)); } /// /// Modeled after shifted quadrant IV of unit circle /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float CircularEaseIn(float p) { return 1f - Mathf.Sqrt(1f - (p * p)); } /// /// Modeled after shifted quadrant II of unit circle /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float CircularEaseOut(float p) { return Mathf.Sqrt((2f - p) * p); } /// /// Modeled after the piecewise circular function /// y = (1/2)(1 - Math.Sqrt(1 - 4x^2)) ; [0, 0.5) /// y = (1/2)(Math.Sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float CircularEaseInOut(float p) { if (p < 0.5f) { return 0.5f * (1f - Mathf.Sqrt(1f - 4f * (p * p))); } else { return 0.5f * (Mathf.Sqrt(-((2f * p) - 3f) * ((2f * p) - 1f)) + 1f); } } /// /// Modeled after the exponential function y = 2^(10(x - 1)) /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float ExponentialEaseIn(float p) { return p == 0f ? p : Mathf.Pow(2f, 10f * (p - 1f)); } /// /// Modeled after the exponential function y = -2^(-10x) + 1 /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float ExponentialEaseOut(float p) { return p == 1f ? p : 1f - Mathf.Pow(2f, -10f * p); } /// /// Modeled after the piecewise exponential /// y = (1/2)2^(10(2x - 1)) ; [0,0.5) /// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float ExponentialEaseInOut(float p) { if (p == 0f || p == 1f) return p; if (p < 0.5f) { return 0.5f * Mathf.Pow(2, (20f * p) - 10f); } else { return -0.5f * Mathf.Pow(2, (-20f * p) + 10f) + 1f; } } /// /// Modeled after the damped sine wave y = sin(13pi/2*x)*Math.Pow(2, 10 * (x - 1)) /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float ElasticEaseIn(float p) { return Mathf.Sin(13f * HALF_PI * p) * Mathf.Pow(2f, 10f * (p - 1f)); } /// /// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*Math.Pow(2, -10x) + 1 /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float ElasticEaseOut(float p) { return Mathf.Sin(-13f * HALF_PI * (p + 1f)) * Mathf.Pow(2f, -10f * p) + 1f; } /// /// Modeled after the piecewise exponentially-damped sine wave: /// y = (1/2)*sin(13pi/2*(2*x))*Math.Pow(2, 10 * ((2*x) - 1)) ; [0,0.5) /// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*Math.Pow(2,-10(2*x-1)) + 2) ; [0.5, 1] /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float ElasticEaseInOut(float p) { if (p < 0.5f) { return 0.5f * Mathf.Sin(13 * HALF_PI * (2 * p)) * Mathf.Pow(2f, 10f * ((2f * p) - 1)); } else { return 0.5f * (Mathf.Sin(-13f * HALF_PI * ((2f * p - 1f) + 1f)) * Mathf.Pow(2f, -10f * (2f * p - 1f)) + 2f); } } /// /// Modeled after the overshooting cubic y = x^3-x*sin(x*pi) /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float BackEaseIn(float p) { return p * p * p - p * Mathf.Sin(p * PI); } /// /// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi)) /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float BackEaseOut(float p) { float f = 1f - p; return 1f - (f * f * f - f * Mathf.Sin(f * PI)); } /// /// Modeled after the piecewise overshooting cubic function: /// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5) /// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1] /// [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float BackEaseInOut(float p) { if (p < 0.5f) { float f = 2f * p; return 0.5f * (f * f * f - f * Mathf.Sin(f * PI)); } else { float f = (1f - (2f * p - 1f)); return 0.5f * (1f - (f * f * f - f * Mathf.Sin(f * PI))) + 0.5f; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float BounceEaseIn(float p) { return 1f - BounceEaseOut(1f - p); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float BounceEaseOut(float p) { if (p < 4f / 11f) { return (121f * p * p) / 16f; } else if (p < 8f / 11f) { return (363f / 40f * p * p) - (99f / 10f * p) + 17f / 5f; } else if (p < 9f / 10f) { return (4356f / 361f * p * p) - (35442f / 1805f * p) + 16061f / 1805f; } else { return (54f / 5f * p * p) - (513f / 25f * p) + 268f / 25f; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float BounceEaseInOut(float p) { if (p < 0.5f) { return 0.5f * BounceEaseIn(p * 2f); } else { return 0.5f * BounceEaseOut(p * 2f - 1f) + 0.5f; } } } } // This is free and unencumbered software released into the public domain. // // Anyone is free to copy, modify, publish, use, compile, sell, or // distribute this software, either in source code form or as a compiled // binary, for any purpose, commercial or non-commercial, and by any // means. // // In jurisdictions that recognize copyright laws, the author or authors // of this software dedicate any and all copyright interest in the // software to the public domain. We make this dedication for the benefit // of the public at large and to the detriment of our heirs and // successors. We intend this dedication to be an overt act of // relinquishment in perpetuity of all present and future rights to this // software under copyright law. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR // OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // // For more information, please refer to