
Quick Start Guide
This is a copy of the user manual on MudBun’s official website.

Please visit the online manual for the latest manual.

Features & Terminologies
Pleas read the info page first to better understand the features & terminologies.

Importing The Package & Building Executables
When upgrading from older versions of MudBun, DELETE the entire MudBun folder before re-importing
from a newer package. File structures might have changed, and directly re-importing a new package on top
of an existing one could cause unexpected issues.

There are folders specific to render pipelines: Built-In RP, URP, and HDRP. There are one of each under
the folders MudBun/Examples and MudBun/Resources/Render. Only import the folders that are specific
to the current render pipeline and leave out the rest. It wouldn’t matter in play mode in editor, but it would
cause errors when building executables.

Note that there are different examples in each render pipeline’s example folder. Be sure to check out all of
them under different render pipelines.

Renderers & Brushes
To generate volumetric VFX mesh, a renderer is needed. Brushes nested under the renderer will be
processed in a top-to-bottom order as presented in Unity’s Hierarchy panel.

To add a new renderer, right click in the Hierarchy panel, and select MudBun > Renderer.

http://longbunnylabs.com/mudbun-manual/
http://longbunnylabs.com/mudbun/

Alternatively, a renderer will be automatically created if a newly created brush is not under an existing
renderer’s hierarchy. For example, creating a new noise volume brush will also create a new renderer and
the noise volume brush will be nested under the renderer.

A solid brush (e.g. the Sphere brush) is blended with all the brushes above it in the Hierarchy panel.

A distortion brush (e.g. the Quantize brush) distorts the sample space and affects all the brushes below it
in the Hierarchy panel.

A modifier brush (e.g. the Onion brush) post-processes the accumulated SDF and thus affects the results
from all the brushes above it in the Hierarchy panel.

Materials
Each brush has its own material, as shown in its Mud Material component. A brush’s material properties,
such as color and smoothness, may be adjusted in-place right within the Inspector panel.

Alternatively, a shared material can be created in the Project panel by right-clicking and selecting Create >
MudBun > Material. This is stored as an asset that can be shared across multiple renderers and brushes.

A renderer has some master material properties. These properties are multiplied with the final results of
voxel materials. For example, setting the master color to a blue color will give the color of the generated
mesh a blue tint. Same as a brush’s material, a renderer’s master material can be bound to a shared
material asset.

Mesh Colliders
Mesh colliders can be generated from a renderer’s current mesh, which can be either added to the
renderer itself or added to a new separate game object. A custom voxel density different from the one used
by the renderer can also be specified for generating mesh colliders.

Custom Brushes
Templates and examples for creating custom brushes are located in the MudBun/Customization folder.

New custom brushes are created in 3 parts: create a brush class in C#, define the brush’s signed distance
field in compute shader, and add the brush class to the creation menu.

To create a brush class, extend either one of the CustomSolid, CustomDistortion, or CustomModifier class.
Two things that must be overridden are the Bound property and FillComputeData method.

The Bounds property returns the bounding axis-aligned bounding box (AABB) of the brush, which is
essential for the renderer to determine where to evaluate voxels. It is acceptable if the AABB is slightly
larger than the actual shape of the brush, which will result in slightly more unnecessary voxel evaluation.
But if the AABB is smaller than the brush, then some voxels will be skipped and holes will appear in the
generated mesh.

The FillComputeData method fills up the brush data to be used by the compute shader and returns the
number of actual SDF brushes to be evaluated by the compute shader, which is typically 1 but there are
exceptions, like curves and particles. The SdfBrush.Type field must be a integer value that doesn’t conflict
with existing brush types; see SdfBrush.TypeEnum in SdfBrush.cs or the defines in BrushDefs.cginc for
exiting brush type values.

Next, the signed distance field (SDF) of the brush needs to be defined in the compute shader. They are
defined by adding new cases on the brush type in the sdf_custom_brush function in CustomBrush.cginc.
Note that re-compiling compute shaders after changing anything in CustomBrush.cginc might take a very
long time, due to the extensive use of SDFs in meshing compute shaders. There are some commented-out

https://en.wikipedia.org/wiki/Signed_distance_function

defines at the top of CustomBrush.cginc that can be uncommented to skip the compilation of some
meshing compute shaders to greatly speed up compilation for faster iteration. For example, to iterate
custom signed distance fields under the flat mesh render mode and marching cubes meshing mode,
uncomment all defines except MUDBUN_DISABLE_MARCHING_CUBES_FLAT_MESH. Once the iteration is complete,
comment all the defines again; otherwise, the disabled render modes and meshing modes will not work.

When creating custom distortion or modifier brushes, it’s also necessary to override the MaxDistortion
property in the C# class to return the correct maximum possible distortion distance of SDFs, as well as add
an extra case in the sdf_custom_distortion_modifier_bounds_query function in CustomBrush.cginc to
return the SDF of the bounds of the effects of the brushes. If the former is not done correctly, some voxels
might be skipped and holes will appear in the generated mesh. The latter is not necessary but can greatly
help with shader-level optimization. In the sdf_custom_brush function, distortion brushes are meant to
modify the p variable to distort the sample point, and modifier brushes are supposed to base the return
value on the res input variable, which is the accumulated SDF results of preceeding brushes.

Finally, add a menu entry in CustomCreationMenu.cs for the custom brush so it shows up in the asset
creation context menu. This step is not necessary if the custom brush is only meant to be instantiated in
code and not meant for in-editor creation.

Although unlikely, users might find the need to customize the bone weighting logic for auto-rigging. It can
be done by adding a case in the apply_custom_brush_bone_weights function in CustomBone.cginc. The
user will be responsible for properly updating the boneRes, boneIndex, and boneWeight variables, which are
float4, int4, and float4, respectively. They hold data for a maximum of 4 bones for each vertex that are
sorted from the most-weighted bone to the least-weighted bone; for example, the x component of each
variable holds the brush’s SDF result, corresponding bone index, and bone weight, respectively. The bone
transforms and indices are optionally recorded and assigned in the overridden FillComputeData function
(see MudCurveSimple.cs as an example). The 4 components of the boneWeight variable must add up to 1.
See the default blend_bone_weights function in BoneFuncs.cginc for a better idea on how to properly
update these varialbes.

GPU Memory Budgets
It’s important to keep track of how much GPU memory is allocated is used. It’s good practice not to allocate
too much more than what is actually needed. The renderer’s Budgets section in the Inspector panel
provides an interface to adjust budgets, monitor the usage, and automatically adjust based on actual
usage.

The Auto-Adjust Budgets option keeps track of high-water marks of voxel & voxel chunk usage and
automatically adjusts the budgets, with the Margin Percent option for reserving an extra safe percentage
of memory margin.

Allocating much more GPU memory than actually needed is not the end of the world, but this could mean
that other code that also needs GPU memory might exhaust it when allocating, potentially leading to a
crash.

If there appears to be holes in the mesh, i.e. some voxels are missing, chances are that the budgets for
max voxels and/or max voxel chunks are set too low. Check the GPU memory usage and increase the
memory budgets accordingly.

Tooltips
Don’t forget that some parameters provide tooltips if you mouse-over them.

Amplify Shader Editor Nodes
Nodes for Amplify Shader Editor are located in the MudBun/Amplify Shader Editor folder. The Mud Mesh
node is for flat & smooth mesh render modes. The Mud Splat node is for circle & quad splat render modes.
The Mud Generated Standard Mesh node is for mesh renderers on locked meshes.

The default shaders for URP and HDRP can be used as references on how to hook up these nodes. They
are located in the URP and HDRP folders under MudBun/Resources/Render. Make sure to open them in
projects under the correct render pipeline with Amplify Shader Editor imported.

Performance
In general, having too much of anything in a game will induce unnecessary performance hit. Here are a few
things to look out for to get the most out of MudBun while maintaining reasonable performance.

•Keep voxel density as low as possible while still looking good. This will help with performance as
well as keeping GPU memory usage low.

•Remember that the flat mesh and splats render modes are computationally cheaper than the
smooth mesh render mode.

•Keep the sizes of distortion and modifier brushes as small as possible, as they can quickly eat up a
lot of voxels as they grow larger.

•Consider trying the splats render mode with low voxel density. It creates a stylized look, and low
voxel density means good performance.

•Watch the number of particles. Each particle is treated as one solid brush. Try using higher self-
blend values and less particles to achieve the same effect, or consider using noise volumes to
arrive at similar effects.

http://amplify.pt/unity/amplify-shader-editor/

	Quick Start Guide
	Features & Terminologies
	Importing The Package & Building Executables
	Renderers & Brushes
	Materials
	Custom Brushes
	Tooltips

