/******************************************************************************/ /* Project - MudBun Publisher - Long Bunny Labs http://LongBunnyLabs.com Author - Ming-Lun "Allen" Chou http://AllenChou.net Based on project "webgl-noise" by Ashima Arts. Description : Array and textureless GLSL 2D simplex noise function. Author : Ian McEwan, Ashima Arts. Maintainer : ijm Lastmod : 20110822 (ijm) License : Copyright (C) 2011 Ashima Arts. All rights reserved. Distributed under the MIT License. See LICENSE file. https://github.com/ashima/webgl-noise */ /******************************************************************************/ #ifndef MUDBUN_CLASSIC_NOISE_2D #define MUDBUN_CLASSIC_NOISE_2D #include "NoiseCommon.cginc" // classic Perlin noise // single octave float mbn_cnoise(float2 P) { float4 Pi = floor(P.xyxy) + float4(0.0, 0.0, 1.0, 1.0); float4 Pf = frac (P.xyxy) - float4(0.0, 0.0, 1.0, 1.0); Pi = mbn_mod289(Pi); // To avoid truncation effects in permutation float4 ix = Pi.xzxz; float4 iy = Pi.yyww; float4 fx = Pf.xzxz; float4 fy = Pf.yyww; float4 i = mbn_permute(mbn_permute(ix) + iy); float4 gx = frac(i / 41.0) * 2.0 - 1.0 ; float4 gy = abs(gx) - 0.5 ; float4 tx = floor(gx + 0.5); gx = gx - tx; float2 g00 = float2(gx.x,gy.x); float2 g10 = float2(gx.y,gy.y); float2 g01 = float2(gx.z,gy.z); float2 g11 = float2(gx.w,gy.w); float4 norm = mbn_taylorInvSqrt(float4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; float n00 = dot(g00, float2(fx.x, fy.x)); float n10 = dot(g10, float2(fx.y, fy.y)); float n01 = dot(g01, float2(fx.z, fy.z)); float n11 = dot(g11, float2(fx.w, fy.w)); float2 fade_xy = mbn_fade(Pf.xy); float2 n_x = lerp(float2(n00, n01), float2(n10, n11), fade_xy.x); float n_xy = lerp(n_x.x, n_x.y, fade_xy.y); return 2.3 * n_xy; } // multiple octaves DEFINE_NOISE_FUNC_MULTIPLE_OCTAVES(mbn_cnoise, float, float2, 0.5) // classic Perlin noise, periodic variant // single octave float mbn_noise(float2 P, float2 rep) { float4 Pi = floor(P.xyxy) + float4(0.0, 0.0, 1.0, 1.0); float4 Pf = frac (P.xyxy) - float4(0.0, 0.0, 1.0, 1.0); Pi = mbn_mod(Pi, rep.xyxy); // To create noise with explicit period Pi = mbn_mod289(Pi); // To avoid truncation effects in permutation float4 ix = Pi.xzxz; float4 iy = Pi.yyww; float4 fx = Pf.xzxz; float4 fy = Pf.yyww; float4 i = mbn_permute(mbn_permute(ix) + iy); float4 gx = frac(i / 41.0) * 2.0 - 1.0 ; float4 gy = abs(gx) - 0.5 ; float4 tx = floor(gx + 0.5); gx = gx - tx; float2 g00 = float2(gx.x,gy.x); float2 g10 = float2(gx.y,gy.y); float2 g01 = float2(gx.z,gy.z); float2 g11 = float2(gx.w,gy.w); float4 norm = mbn_taylorInvSqrt(float4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; float n00 = dot(g00, float2(fx.x, fy.x)); float n10 = dot(g10, float2(fx.y, fy.y)); float n01 = dot(g01, float2(fx.z, fy.z)); float n11 = dot(g11, float2(fx.w, fy.w)); float2 fade_xy = mbn_fade(Pf.xy); float2 n_x = lerp(float2(n00, n01), float2(n10, n11), fade_xy.x); float n_xy = lerp(n_x.x, n_x.y, fade_xy.y); return 2.3 * n_xy; } // multiple octave DEFINE_PERIODIC_NOISE_FUNC_MULTIPLE_OCTAVES(mbn_pnoise, float, float2) #endif